Bordetella PlrSR regulatory system controls BvgAS activity and virulence in the lower respiratory tract.

نویسندگان

  • M Ashley Bone
  • Aaron J Wilk
  • Andrew I Perault
  • Sara A Marlatt
  • Erich V Scheller
  • Rebecca Anthouard
  • Qing Chen
  • Scott Stibitz
  • Peggy A Cotter
  • Steven M Julio
چکیده

Bacterial pathogens coordinate virulence using two-component regulatory systems (TCS). The Bordetella virulence gene (BvgAS) phosphorelay-type TCS controls expression of all known protein virulence factor-encoding genes and is considered the "master virulence regulator" in Bordetella pertussis, the causal agent of pertussis, and related organisms, including the broad host range pathogen Bordetella bronchiseptica We recently discovered an additional sensor kinase, PlrS [for persistence in the lower respiratory tract (LRT) sensor], which is required for B. bronchiseptica persistence in the LRT. Here, we show that PlrS is required for BvgAS to become and remain fully active in mouse lungs but not the nasal cavity, demonstrating that PlrS coordinates virulence specifically in the LRT. PlrS is required for LRT persistence even when BvgAS is rendered constitutively active, suggesting the presence of BvgAS-independent, PlrS-dependent virulence factors that are critical for bacterial survival in the LRT. We show that PlrS is also required for persistence of the human pathogen B. pertussis in the murine LRT and we provide evidence that PlrS most likely functions via the putative cognate response regulator PlrR. These data support a model in which PlrS senses conditions present in the LRT and activates PlrR, which controls expression of genes required for the maintenance of BvgAS activity and for essential BvgAS-independent functions. In addition to providing a major advance in our understanding of virulence regulation in Bordetella, which has served as a paradigm for several decades, these results indicate the existence of previously unknown virulence factors that may serve as new vaccine components and therapeutic or diagnostic targets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenotypic modulation of the virulent Bvg phase is not required for pathogenesis and transmission of Bordetella bronchiseptica in swine.

The majority of virulence gene expression in Bordetella is regulated by a two-component sensory transduction system encoded by the bvg locus. In response to environmental cues, the BvgAS regulatory system controls expression of a spectrum of phenotypic phases, transitioning between a virulent (Bvg(+)) phase and a nonvirulent (Bvg(-)) phase, a process referred to as phenotypic modulation. We hyp...

متن کامل

Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity.

Bordetella pertussis, the causative agent of whooping cough, regulates expression of many virulence factors via a two-component signal transduction system encoded by the bvgAS regulatory locus. It has been shown by transcription activation kinetics that several of the virulence factors are differentially regulated. fha is transcribed within 10 min following a bvgAS-inducing signal, while prn is...

متن کامل

Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional...

متن کامل

A novel sensor kinase is required for Bordetella bronchiseptica to colonize the lower respiratory tract.

Bacterial virulence is influenced by the activity of two-component regulator systems (TCSs), which consist of membrane-bound sensor kinases that allow bacteria to sense the external environment and cytoplasmic, DNA-binding response regulator proteins that control appropriate gene expression. Respiratory pathogens of the Bordetella genus require the well-studied TCS BvgAS to control the expressi...

متن کامل

Unraveling the Bvgas Phosphorelay

The BvgAS two-component system controls virulence in the human respiratory pathogen Bordetella pertussis, the etiological agent of whooping cough. BvgAS is unlike orthodox two-component signal transduction systems in that it employs a four step phosphorelay from the sensor protein BvgS to the response regulator BvgA, instead of the more common two step phosphotransfer. Further, B. pertussis dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 8  شماره 

صفحات  -

تاریخ انتشار 2017